Geography Curriculum Units

with examples of teaching activities

Form 1

Directorate for Quality and Standards in Education
Curriculum Management Department
Malta 2014
Geography Curriculum
GEOGRAPHY CURRICULUM UNITS - FORM 1

GEO 7.1 Map Detectives

GEO 7.2 Exploring Malta (1)

GEO 7.3 Exploring Malta (2)
Subject: Geography
Unit code and title: GEO 7.1 Map Detectives
Strand: The Environment – Physical and Human

Objectives
The teacher will:

1. show students how to draw vertical representations of objects, rooms and larger areas;
2. enable students to draw simple routes and measure distances on plans and maps and translate them into real distances;
3. provide plans and maps for the students to find direction;
4. enable students to locate places or map symbols by the use of four-figure grid reference.

Key Words
map, plan, direction, points of the compass, scale, linear scale, map symbols, key/legend, grid square, four figure grid reference

Points to Note
Geography stimulates an interest in and a sense of wonder about places and this can be achieved through an enquiry approach to learning, which centres more on student activities. Students should be active in the learning process through fieldwork or through resources such as maps, photographs, items from the internet and statistics. The use of group work helps to facilitate the active characteristics of much enquiry work.

- Maps are the distinctive tool of the geographer. Map skills introduced in this unit such as locating a place on a map and how to get from one place to another and the utilisation of atlas and Ordnance Survey Maps are particularly important to ensure that all students have the tools and skills to progress in the subject at future levels and allow them to develop their graphicy skills.

- Ordnance Survey maps present students with greater learning problems than is generally realised. The idea of scale for example is difficult to understand and care should be taken not to rush through this section.

Resources
A range of simple everyday objects such as a cup and saucer. Simple plans of houses and plans of rooms from furniture makers’ catalogues. A street map of the area close to the school.
Large wall maps of Malta, the Mediterranean and the World. Google Earth software. Silva or card compasses. OS map Extracts with a scale of 1:2500, 1:5000, 1:10000, 1:25000 and 1:50000 Interactive Geography Form1 CD Ordnance Survey Maps:
http://www.bing.com/maps/
http://mapzone.ordnancesurvey.co.uk/mapzone/gamespages/flashcards.htm
A number of hyperlinks are indicated in the examples for teaching and learning situations column.
<table>
<thead>
<tr>
<th>Teaching Objectives</th>
<th>Examples of teaching experiences and activities</th>
<th>Indicators of Possible Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The teacher will:</td>
<td>The teacher projects the initial world map of Google Earth and zooms down to locate the school to afford an example of the concept of a plan. Similarly the students will draw simple plans of familiar objects such as a bucket, a glass, a cup and saucer. At the end of the session some students will show their plans to their classmates.</td>
<td>Students will draw complex objects and plans of rooms to scale as seen from above and annotate with labels. They note the difference between a side view and a plan. (Level 8)</td>
</tr>
<tr>
<td>show students how to draw vertical representations of objects, rooms and larger areas.</td>
<td>The teacher organises the students into four groups according to ability. By means of work-cards asks students to draw objects present in the classroom. Students will then produce a plan of the classroom including the door, windows and other furniture. Discuss with students ways to identify objects that may be hard to recognise from above such as doors and windows. Eventually this will lead to the idea and importance of drawing symbols, adding labels and a key.</td>
<td>Students will imagine and draw simple objects as seen from above. (Level 7)</td>
</tr>
<tr>
<td></td>
<td>Another group of students can attempt an accurate scale drawing of the classroom and school. The final plan can include symbols, a key and scale.</td>
<td>Students will recognise simple shapes for real objects (e.g. rectangle for table or circle for plate) and draw very simple objects as seen from above with assistance. (Level 5)</td>
</tr>
<tr>
<td></td>
<td>A follow up activity would be to ask students to draw plans of rooms of their house such as the bathroom, kitchen etc.</td>
<td></td>
</tr>
<tr>
<td>enable students to draw simple routes and measure distances on plans and maps and translate them into real distances.</td>
<td>Teacher asks students to perform an action such as going to the door or to a certain window, bringing a particular article from a place; the route taken has then to be indicated on a class plan.</td>
<td>Students will locate and mark features on a plan of the local town or village and devise routes to perform particular tasks or actions. Students will measure straight line distances and curves on maps including OS Maps 1:25 000 and 1:50 000. They translate distance on a map into real distance using the given scale which could be any one of the three types – Linear, Representative Statement and Ratio.</td>
</tr>
<tr>
<td></td>
<td>Provide 4 large plans of the school and its grounds and ask students to go around the school site divided into 4 groups according to ability. One group will mark detailed features such as skips, benches and gate and devise routes. Similarly another group will locate larger features such as blocks, classrooms or main gate and draw routes. This provides a focus for their attention and enables them to link the plan with reality.</td>
<td>Students will translate the distance from</td>
</tr>
<tr>
<td></td>
<td>Using a large-scale map of the area around the school, students align the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will draw complex objects and plans of rooms to scale as seen from above and annotate with labels. They note the difference between a side view and a plan. (Level 8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will imagine and draw simple objects as seen from above. (Level 7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will recognise simple shapes for real objects (e.g. rectangle for table or circle for plate) and draw very simple objects as seen from above with assistance. (Level 5)</td>
<td></td>
</tr>
</tbody>
</table>
map with the streets, note the route of their journey with arrows and record some of the key features seen. Such an activity can complement the development of the child’s sense of place and space as well as his/her map making ability and knowledge of the locality.

Provide students with atlases and wall maps to identify various examples of scales used on the various maps presented. Students link the different types of scales namely Statement, Ratio, and Linear Scale to particular maps.

Students use the linear scale to measure the width, length and area of different plans to find the actual size.

Organise students to work in groups according to ability and ask them to measure straight and curved distances (say along roads and rivers) using the linear scale and the representative ratio (e.g. 1cm represents 5 km) on a variety of large maps. Some groups will be given distances with greater curvatures. A piece of string or cotton or a paper strip can be used to measure distances which are not straight. The measurements taken should then be used to ascertain the real distances.

Using atlases ask students to calculate straight line distances between places. Organise students in groups to carry out similar activities using Google Earth or GIS software available.

Ask students to measure straight line distances along two points on large maps. Any straight edge, including a ruler can be used to measure straight line distances.

Show students who have grasped the various map skills how to represent the same scale in different ways and practise this skill using various maps.

| provide plans and maps for the students to find direction. | Teacher presents one of the large plans drawn by the students in the previous lessons. Teacher asks them which side of the classroom do they see the morning sun (rise). That will be the East, always to be put on our right side of plans and maps. The letter E and hence the compass is drawn on the one scale to another. (Level 8) |
| Students will locate and mark features on a plan of the school grounds and village. Students will measure straight line distances and curves on maps. They translate distance on a map into real distance using the linear scale and the representative statement limited only to 1cm represents 1m and 1cm represents 1km. (Level 7) |
| Students will locate and mark features on a plan of the school grounds. Students will measure straight line distances on simple maps. They translate distance on a map into real distance using the linear scale. (Level 6) |
| Students will locate and mark features on a plan of classroom. Students will measure straight line distances on simple map. They translate distance on a map into real distance using the linear scale. (Level 5) |

Students will use the compass with ease and know how it functions. They differentiate between True North and Magnetic North. They use various
class plan.
The class is taken out in the yard about midday. A student faces the sun with arms pointed sideways. Since the sun is in the South, the shadow points North, the left arm points East the direction of the morning sun, and the right arm points West. These are checked by means of the compass and drawn on a plan of the yard.

Conduct a quiz to find out what students know and remember about the eight main points of the compass. Ask students to draw the eight main points in English and Maltese. Tell students to identify the direction that different places are from each other using a plan of their classroom starting with the east for the direction of the morning sun. Teacher will use a map of Malta showing some places to ask students the compass direction of one place from another.

Teacher explains how to read a compass and make children handle different types of compasses provided. Explain the main features of a compass emphasising on the fact that the compass needle points to the Magnetic North which is slightly different from the True North which marks the northern axis of the world.

Encourage students to create their own compass using the instructions provided on website indicated below,

http://adventure.howstuffworks.com/outdoors-activities/hiking/compass2.htm

The teacher allows children to experiment with a compass and a good extension might be to devise games prescribing routes using the compass and distances. A consolidation activity might be a treasure hunt by which students must give and follow compass directions to reach their goal.

<table>
<thead>
<tr>
<th>enable students to locate places or map symbols by the use of four-figure grid</th>
<th>The teacher provides large OS Maps (scale of 1:2500, 1:5000, 1:10000, 1:25000 or 1:50000) with key to symbols. Organise students in groups. Provide each group with a collection of images showing local physical and</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will become familiar with and able to use a wide range of map symbols. Students will give and use four figure and</td>
<td>techniques to find direction without using a compass. (Level 8) Students will become familiar with using compass directions on maps and can use them to provide directions in real life situations or simple maps. They find True North by identifying where the sun rises and sets. (Level 7)</td>
</tr>
<tr>
<td>Students will draw and label the eight points of the compass in Maltese and English and move towards any of the eight major directions using this compass rose. (Level 6) Students make their own simple compass using simple instruction. They draw and label the four cardinal points in Maltese and English. (Level 5)</td>
<td></td>
</tr>
<tr>
<td>human features (e.g. a quarry, a lighthouse, a camp site, an information centre, a church etc.). Ask the students to draw the appropriate symbol from the map key for each corresponding image. Provide children with a large outline map of an imaginary island. Let them fill it with symbols of their own choice to show particular features. Let them be imaginative but at the same time real. Each group gives a presentation on what one can see if one visits the island. An activity for higher ability groups includes drawing symbols on an outline map of an area following given instructions. A title and a key must always be added. Students can access the map zone site and play in groups the Map Symbols Flashcards interactive game where they have to match the map symbols to their respective description. Use the OS Map symbols card games to help students remember and identify commonly used map symbols. Cards in full colour showing common conventional symbols and instructions of how to play such games, Quick as Flash, Flash Bingo and Flashcard pairs are available on the interactive Form 1 CD. They can also be downloaded from:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>http://www.daventryst scouts.co.uk/phocadownload/activityofmonth/os-flashcards.pdf</td>
<td>six figure grid references accurately. (Level 8)</td>
</tr>
<tr>
<td>http://www.climbingcourse.co.uk/navigation/os_map_symbol_flashcards.pdf</td>
<td>Students will be able to use a legend showing the symbols used on the map. Students will give and use four figure grid references to locate and draw map symbols. (Level 7)</td>
</tr>
<tr>
<td>Use the animation file entitled Grid Reference on the Interactive Geography Form 1 CD to familiarise students with the idea that OS Maps are overlaid by a series of grid lines known as eastings and northings. Use the interactive animations to help students visualise how grid squares are identified on OS Maps. The teacher asks students to compile the co-ordinates for a number of features and locate places first using just four figure grid squares then when the concept has been grasped in six-figure grid reference. Teacher organises students in groups and asks them to find the exact</td>
<td></td>
</tr>
<tr>
<td>Students will become familiar with using a simple map legend to read a map. Students will give four figure references of symbols used on the map. (Level 6)</td>
<td></td>
</tr>
<tr>
<td>Students will use a simple map legend. (Level 5)</td>
<td></td>
</tr>
</tbody>
</table>
position of certain features marked on large scale OS Maps. An extension activity would be to ask students to draw symbols on maps provided in the place indicated by the six-figure grid reference.

Arrange students in groups. Ask them to imagine that they have been hired as professional mapmakers to create a map of a recently discovered, yet populated island. Their task would be to construct and label their own island using map symbols. Suggest adding mountain ranges, major rivers and streams, highways, bridges, settlements, churches, schools, different types of vegetation, etc. Encourage them also to draw grid lines and write numbers to complete the map. When maps are complete, have students create 10 questions that require the use of the grid and symbols on their map. Encourage them to ask not only where on the grid is a particular feature located but to also give a grid location and have students tell what is found at that location. Have each group exchange maps and answer the questions of other groups. When each has finished, they should check each group’s answers and explain any they might have missed.

Teacher provides various materials and resources necessary for the students to create a detailed 3D model of an area from an Ordnance Survey Map. Each group of students will be asked to draw an enlarged sketch map of the area represented by the OS Map which will include grid squares, grid references, compass points and all other mapping skills acquired so far. Students will then use discarded materials such as cardboard and egg crates to create objects such as buildings, trees, rivers in 3D to represent all the features and symbols shown on the map. When the 3D models are completed have groups make brief oral presentations to the class. Such an activity helps to consolidate all the mapping skills introduced in this unit.

The animation file entitled Grid Reference and the 6-Figure GR Game both available on the Interactive Geography Form 1 CD provide extra practice and further examples for those students who need it.
Subject: Geography

Unit code and title: GEO 7.2 Exploring Malta (1)

Strand: The Environment - Physical and Human

Objectives

The teacher will:

1. use resources to enable students locate the Maltese Islands, the Mediterranean and some European countries, their islands and capital cities.
2. use resources to help students observe and record the local weather;
3. help students discover the characteristics of the geological formation of the Maltese Islands;
4. encourage students to explore the karstic features created by water as it flows through permeable rocks.

Key Words

- anemometer, maximum and minimum thermometers, rain gauge, Stevenson screen, wind vane, meteorological station, Sea of Tethys, sedimentary rocks, Blue Clay, Globigerina Limestone, Upper and Lower Coralline Limestone, Greensand, fossils, geology, porous, permeable and impermeable rocks, caves, pot holes, pillars, stalactite, stalagmite

Points to Note

Geography stimulates an interest in and a sense of wonder about places and this can be achieved through an enquiry approach to learning, which centres more on pupil activities. Students should be active in the learning process through fieldwork or through resources such as maps, photographs, items from the internet and statistics. The use of group work helps to facilitate the active characteristics of much enquiry work.

- Students should be made aware that fossils are part of our natural heritage and are protected by law. They will be advised not to extract fossils since this may cause permanent and irreparable damage to our natural heritage.
- Teachers are encouraged to take their students on a visit to the Malta Airport Meteorological Office to appreciate the work of the meteorologist in order to produce an accurate weather forecast. Similarly teachers are encouraged to take their students on a visit to one of the following caves: Għar Dalam, Għar ta’ Scerri, Għar ta’ Ninu to explore the limestone features therein. Another visit may be held at the Natural History Museum.

Resources

- Wall maps of Malta, Europe and the Mediterranean, atlases, Geography Interactive Form 1 CD, simple weather instruments (anemometer, wind vane, rain gauge, minimum and maximum thermometers), samples of five different rock strata found in Malta.

Locational Knowledge

- All Mediterranean countries and capital cities.
- United Kingdom, Germany, Belgium, Luxembourg, Sweden and five other EU countries and respective capital cities.
Teaching Objectives

The teacher will:

use resources to enable students locate the Maltese Islands, the Mediterranean and some European countries, their islands and capital cities.

Examples of Teaching Experiences and Activities

Teacher provides maps and pictures of Europe and the Mediterranean for a game quiz devised by the students themselves in mixed ability teams. E.g. of questions; *What country touches both Spain and Italy?*, *Of which country is Athens the capital city?*

Three mixed ability groups will be respectively provided with a map of the Maltese Islands, the Mediterranean and Europe. One group will measure the length of Malta and Gozo; one group will measure the distances from Malta to Gibraltar, Sicily, Libya and the Suez Canal; the third group to measure the air distances from Malta to the most important destinations e.g. London, Rome and Frankfurt.

Locating places in Europe and/or Mediterranean

i) by flash cards with place name drawn by bingo and placed by students on a wall map,

ii) by dragging or inputting the names on the computer maps available on the Geography Interactive Form 1 CD. Groups of students can play these related games which have varying levels of difficulty.

iii) by recognising the shape of individual countries’ maps by

- dragging the shape onto the actual general map of Europe,
- clicking on the right name from a list according to map of individual country shown,
- providing an outline political map of Europe and Mediterranean to colour each country accordingly.

Arrange class in groups and ask each group of students to load Google Earth on their computers. Tell them to zoom in the Mediterranean Sea and let them explore the numerous islands found in this sea. Project on the interactive whiteboard a number of questions such as, *Which is the largest*

Indicators of possible Learning Outcomes

Students will know the location of all Mediterranean and European countries, their capital cities and their main islands. (Level 8)

Students will name and locate Mediterranean countries, their capital cities and main islands. Apart from the EU Mediterranean countries, students will name and locate the following countries and respective capital cities; United Kingdom, Germany, Belgium, Luxembourg, Sweden and any other five EU countries. (Level 7)

Students will name and locate Mediterranean countries, their capital cities and main islands. (Level 6)

Students will name and locate the three main islands of the Maltese archipelago. They identify a number of neighbouring countries within the Mediterranean including France, Italy, Greece, Libya and Tunisia. (Level 5)
| Mediterranean Island? Which Mediterranean island is furthest away from Malta? Which Mediterranean island is closest to Malta? To which country is the island of Lampedusa closest to? Which sea contains the most islands? Let the students work together as a team to discover the answers to such questions.

A follow-up activity would be to present a table to each group containing the distance in kilometres of numerous islands away from Malta. Their task would be the use the scale on their atlas or the measurement tool on Google Earth to identify each island. In the list include the largest Mediterranean islands together with some islands students are not so familiar with such as Stromboli, Kerkennah. Students will then locate and name the islands included in the list on a large outline map of the Mediterranean.

| use resources to enable students to observe and record the local weather.

Teacher uses national (TVM) and international (BBC, Euronews, RAI) weather forecasts to develop the student’s understanding of simple pictorial weather symbols and variations in weather across different countries. In groups ask students to observe the weather present and produce a weather report for the day by looking out of the classroom window. Encourage students to use a range of weather terms to describe the weather present such as windy, clear, dry, mild, cloudy, thunderstorm etc. Such an activity can be repeated for a number of days and students will be asked to produce their own weather report for say a week.

Teacher organises students in four groups. Each group will be given a weather instrument to handle, namely an anemometer, a wind vane, a rain gauge and a maximum and minimum thermometer. Students will examine each instrument and identify what each instrument measures, what units of measurements are used and describe how it works. For each instrument students should draw an annotated diagram and identify the best location where it can be placed to ensure accurate and valid results. In turn each group will handle and examine all the instruments provided. Alternatively, students could complete a matching activity on the interactive whiteboard using photos of instruments (including the Stevenson screen) and labels with

Students will describe in detail using the relevant geographical terms the elements of the weather through primary and secondary sources and explain how the weather can affect people’s lives and work patterns. Furthermore through the use of IT they will analyse weather patterns for a period of time. They will plot and interpret climate graphs including max. and min. temperature and precipitation from data presented even using IT. (Level 8)

Students will define the elements of the weather using primary and secondary sources. They will recognise and use the following weather instruments namely; the anemometer, wind vane, rain gauge,
names, appropriate locations and units of measurement.
Teacher enables students to refine their observations by taking actual readings using all the instruments mentioned above. Perhaps in every lesson for the duration of the unit, the teacher can provide opportunities involving all students in collecting and processing their own data. The students could make observations either with or without the teacher’s help and record the results as a classroom display.

Teacher introduces students to climate graphs and shows and explains how they are drawn. Organise the class in groups according to ability. Each group will be asked to draw a climate graph (temperature and precipitation) for Malta using statistical data presented. Some students will be expected to plot the maximum and minimum temperature and the precipitation graphs on graph paper and include labels and title. They may be asked also to describe and explain how annual variations in temperature and rainfall may influence human activities. Other groups can plot the climate data on grid squares provided with labels while others may need assistance to complete separate graphs, one for precipitation and another for temperature. Students competent in ICT could use a word processor to draft and plot the climate graph.

Teacher projects on the interactive whiteboard the official website of the Malta Airport Met Office. The class will be organised in groups and each group will be given a particular task to carry, e.g. to plot on an outline map of Europe the main temperatures in other European cities; to fill details of current weather conditions (e.g. temperature, wind speed, UV Index); to give forecast for the next 5 days; the rainfall totals in various localities in Malta etc. Such an activity will help students use sources of information available on the internet to investigate the weather and climate patterns.

maximum and minimum thermometers and identify the best location for each to provide valid results. Students will explain the use and importance of the Stevenson Screen to provide accurate temperature readings. They will plot and read temperature and precipitation graphs from data presented. (Level 7)

Students distinguish between the weather elements including temperature, rainfall, wind speed and direction. They observe and list the main differences between hot and cold temperatures, strong and light wind and heavy and light rain. They use simple instruments to obtain data. Students will plot rainfall and temperature graphs on a grid with given axis from data presented. They will read and interpret pictorial weather maps as presented on TV/internet. (Level 6)

Students will be able to distinguish the weather elements (temperature, rainfall, wind) and with assistance build simple weather instruments. They match these instruments to its corresponding weather element. They interpret simple weather symbols. (Level 5)
help students discover the characteristics of the geological formation of the Maltese Islands.

| Help students discover the characteristics of the geological formation of the Maltese Islands. | After watching the animation of the Sea of Tethys the students comment on the size of the Mediterranean over the span of time. The students are organised in mixed ability groups and each group is provided with samples of the five different types of rock found in Malta. The students handle and examine the samples to list the main characteristics of each type and then compare the samples. The students can then write about the different colours, structure (hardness: breaks easily; crumbles; hard) and texture (rough, smooth; humid) of the samples they are examining. Each group gives a presentation about their findings and compare results. The teacher provides each group of students with a variety of materials such as sand, gravel, soil with sticks and leaves, pebbles, shells, fragmented shells, small fish bones and transparent plastic containers. The students then build their own sedimentary block of rock by taking each item in turn and patting it down to form a flat layer representing the strata. The teacher explains the terms associated with sedimentary rock (strata; bedding planes, fossils, horizontal layers, youngest layer, oldest layer) and the students then affix small flash cards of these terms on their model. Each student individually makes an annotated diagram of their model. The teacher prepares material required (plasticine, sea shells, plastic cups and plaster of Paris) so that the students can create their own fossil cast of a sea shell. Through a discussion students comment on how fossils have ended up within our layers of rock and the importance of fossils for geologists. Students make drawings of actual fossils on display at the Museum of Natural History of Mdina or Museum of Natural History at Victoria Gozo or from images supplied by the teacher. Through the use of games such as those available on the Interactive Geography Form I CD or through the use of flashcards the students find out the sequence of the five layers of sedimentary rocks found in Malta and the main characteristics for each layer. In groups students examine the general and geological maps of Malta to find | Students through the observation of images and a geological map of the Maltese Islands can account for the absence of certain rock layers in various parts of Malta. They use an extended vocabulary to describe the processes involved in the formation of sedimentary rocks, fossils and the local geological sequence of rock strata. (Level 8) | Students will use the correct geographical key words to describe the processes involved in the formation of sedimentary rocks, fossils and the local geological sequence of rock strata. They will recognise by the use of either rock samples or imagery the five main rock types of the Maltese Islands. They describe the main characteristics and uses of each rock type. They identify the surface rock using a simple geological map of Malta. (Level 7) Students will describe in simple terms the processes involved in the formation of sedimentary rocks and fossils. They draw and label a diagram showing the local geological sequence of rock strata in both English and Maltese. They link each rock type with its respective main use. (Level 6) |
encourage students to explore the karstic features created by water as it flows through permeable rocks.

Teacher projects a dramatic video clip of Postojna Caves available on the Interactive Geography Form 1 CD. Discuss how various features seen in the video might have formed (by erosion?, by deposition? How long did they take to form? What are they made of?). After a brief discussion on the features produced by water as it seeps through the rocks the teacher asks students to draw their own imaginary cave to include features seen in the video including stalactites, stalgmites, underground lakes, pillars and pot holes. Individual students will then take other students around a guided tour of their cave explaining the attractions and main features of the cave.

Teacher organises class in three groups. With simple experiments help students understand the terms porous rocks, permeable and impermeable rocks by conducting the following three experiments:

- **How much water can rocks hold?**
- **How permeable are rocks?**
- **Permeable and Impermeable rocks.**

Instruction cards describing how to conduct each of these experiments are found on the Interactive Geography Form 1 CD.

Ask students to research a famous cave using the internet (provide list of caves e.g. Lascaux caves, Castellana caves, Postojna Caves, Cheddar Caves, Carlsbad Caverns and appropriate websites to lower ability groups). Each group will then need to compile a fact file on the cave in question and download images and write simple captions under each photo. Each group will share his findings with the rest of the class.

Teacher projects on interactive whiteboard images of features formed by
| **water seeping through cracks and bedding planes in rocks. Teacher asks students to identify features seen by dragging or inputting the correct geographical term next to the feature. Teacher asks students to draw annotated diagrams and explain the process of how each feature was formed.** | **put in sequence the various steps in the processes involved in the formation of these landforms. They can label simple diagrams of such features. (Level 6)** |
| | **Students will match given labels to a model of an underground cave. (Level 5)** |
Subject: Geography
Unit code and title: GEO 7.3 Exploring Malta (2)
Strand 1: The Environment – Physical and Human
Strand 2: Management, Conservation and Sustainability

Objectives:
The teacher will:
- enable students identify the location and characteristics of some large towns and villages in Malta;
- help students explore Malta’s main attractions as well as the benefits and the negative impacts of tourism on the local economy and environment.

<table>
<thead>
<tr>
<th>Key Words</th>
<th>Points to Note</th>
<th>Resources</th>
</tr>
</thead>
</table>
| rural, urban, nucleated, planned settlements, village core, function, tourist resort | Geography stimulates an interest in and a sense of wonder about places and this can be achieved through an enquiry approach to learning, which centres more on pupil activities. Students should be active in the learning process through fieldwork or through resources such as maps, photographs, items from the internet and statistics. The use of group work helps to facilitate the active characteristics of much enquiry work. | Google Earth Software
Interactive Form 1 Geography CD
Street plans www.multimap.com

Locational Knowledge
Malta, Gozo, Comino, Valletta, Sliema, Mdina, Marsaxlokk, Mgarr (Gozo), Rabat/Victoria (Gozo) and any other three settlements.
<table>
<thead>
<tr>
<th>Teaching Objectives</th>
<th>Examples of Teaching Experiences and Activities</th>
<th>Indicators of possible Learning Outcomes</th>
</tr>
</thead>
</table>
| **Strand 1**
The teacher will: help students identify the location and function of large towns and villages in Malta. | Teacher projects a number of images of various settlements in Malta e.g. Mdina, Sliema, Valletta, Marsaxlokk, Mgarr, Mellieha, Victoria, Xaghra. Working in pairs they have to name the localities and classify according to rural, urban, hamlet, village, town, coastal and inland. Teacher provides flash cards with main characteristics and functions of settlements and students have to classify these flash cards according to rural or urban referring to photos presented. Students have then to locate these settlements on a given outline map of Malta. Arrange class in groups and ask each group of students to list as many localities from the Maltese islands as possible in a short period of time. Following this activity provide each group with a map of Malta and let them explore the location of the places they listed. Hand over to each group of students a set of flashcards containing the names of various settlements in Malta and Gozo. Present to each team a different challenging task such as to devise a route for a group of tourist arriving at Malta with a cruise liner and are planning to visit Blue Grotto. Their assignment would be (without using a map) to select from their list of settlements the places they need to pass through in order to reach the destination indicated and to place the flashcards in sequence. They can draw a mental route representing their perception and knowledge of the Maltese Island. A simple way this can be achieved is by drawing a simple map as represented below, Students can then be allowed some time to consult a map of the Maltese Islands and make modifications to their work if necessary. Students can also plot the route on an outline map of Malta or access Google Earth and make use of the path tool to find and mark these locations, calculate distances between places, use the animation feature of the software to view a tour along the marked places, explore important features in 3D and view localities in 360 degrees. | Students will devise routes using Google Earth and plot various routes on an outline map of Malta. They name and locate on a map of Malta a wide range of localities. Students distinguish between different settlements patterns by examining maps and aerial photographs. They draw simple sketches to show these different patterns. (Level 8)
Students will locate on a map of Malta the following localities, Valletta, Sliema, Mdina, Marsaxlokk, Mgarr (Gozo), Rabat/Victoria (Gozo) and any other three settlements. They recognise and suggest reasons for the functions of settlements from given photographs. They recognise the street pattern of the village core and modern areas from aerial photographs and maps. (Level 7)
Students will locate on a map of Malta the following localities, Valletta, Sliema, Mdina, Marsaxlokk, Mgarr (Gozo), Rabat/Victoria (Gozo). They define the terms rural and urban and group settlements accordingly. (Level 6)
Students will locate on a map of Malta a few localities. They classify settlements |
Strand 1 and 2

- **Teacher projects Google Earth and zooms on the most important towns in Malta and Gozo. By their shape the students categorize the settlements under the different settlement patterns namely linear, nucleated, planned and unplanned shape. Students make simple sketch maps of these settlements.**

<table>
<thead>
<tr>
<th>According to very simple criteria, namely coastal or inland, village or town. (Level 5)</th>
</tr>
</thead>
</table>

- **Teacher shows video clips on the interactive whiteboard available on the official Tourism Site. The class will be organised in groups and each group will be asked to list some physical and human attractions which appeal to tourists visiting Malta, including climate, culture, heritage, natural landscapes, diving, nightlife, hotels etc.**

<table>
<thead>
<tr>
<th>Students analyse tourist data presented to them and translate these into graphs. Through the use of the same graphs the students examine the problems of seasonality and dependence on the British market and suggest possible solutions. Students will plan a detailed itinerary for a guided three day tour of either Malta or Gozo including maps, images, descriptions and captions. (Level 8)</th>
</tr>
</thead>
</table>

- **Provide groups of students with a set of resources, brochures, timetables – to plan a sightseeing tour of Malta and/or Gozo for a group of European visitors for a one week stay. The aim is to give the visitors a feel of some important places and offer various activities. Discuss with students what might be considered important and why. The official tourism site for Malta, Visit Malta, and other sites (Heritage Malta, Din l-Art Helwa, Fondazzjoni Wirt Artna, Nature Trust) can provide access to a range of sites for route planning, public transport schedules, ferry service which are interactive and enable students to search for options more quickly. Ask students to write up the itinerary, to show it in map form and to justify their choices. Help students to download images of main attractions that are going to be included. Students may then compare their tour plans, which may be marked on a class map to identify any similarities and patterns. The presentations to the class could be staged as a competition to be judged by a panel to discover the most interesting tour.**

<table>
<thead>
<tr>
<th>Students will name and explain the main tourist attractions and recognise and describe the positive and negative impact of the tourist industry to the economy and environment. (Level 7)</th>
</tr>
</thead>
</table>

- **Students investigate through personal interviews with relatives and friends about their occupations in order to classify according to relation with the tourist industry e.g. fully related (hotels, restaurants), indirectly related (transport, souvenir, heritage) and non-related. Such an activity will help students to conclude that tourism constitutes a large sector of the Maltese economy.**

<table>
<thead>
<tr>
<th>Students will list the main advantages and disadvantages of the tourist industry in Malta. They give examples of attractive places including natural and cultural sites, find pictures of these sites and write simple sentences about these attractions. They list jobs fully or indirectly related to the local tourist industry. (Level 6)</th>
</tr>
</thead>
</table>

- **Teacher projects a number of images depicting negative impacts of the tourist industry (hotel obscuring scenic view or breaking the sky line, overcrowding on beach, rubbish bags opposite restaurant, large development project on garrigue, traffic congestion and noise in tourist areas, strain on infrastructure, impact on**

| Students will explore a limited range of tourist attractions in Malta and note why this industry is important to the economy. Students match pictures to different types |
biodiversity) and through role play students give their perspectives from various points of view.

Teacher provides sites so that students may find out statistics regarding tourism e.g. tourist arrival by month and by nationality. Students translate data into graphs in order to be aware of the problems of seasonality and dependence on the British market. Encouraged students to give possible solutions.
Locational Knowledge in Geography

Geography deals with spatial distribution and places and therefore locational knowledge of the most important and relevant places by means of maps is a vital tool and means of reaching most learning outcomes. Students will be given opportunities to locate places and environments using a range of resources including maps, globes, atlases, digital atlases, interactive games and internet satellite images. In particular students can set relevant international events within a geographical framework and understand spatial relationships. The table below includes a list of places whose map location should be known by the students by the end of each year. These should be taught as an integral part of each related unit. Maps and wall maps will still be used throughout the year for consolidation.

Locational Knowledge - Form 1 (Level 7)

<table>
<thead>
<tr>
<th>Maltese Islands</th>
<th>Places and Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component parts of the Maltese Islands</td>
<td>Malta, Gozo, Comino</td>
</tr>
<tr>
<td>Capital Cities</td>
<td>Valletta (Malta), Rabat/Victoria (Gozo)</td>
</tr>
<tr>
<td>Important Settlements (apart from capital cities)</td>
<td>Siema, Mdina, Marsaxlokk, Mgarr (Gozo) and any other three settlements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mediterranean</th>
<th>Places and Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries of the Mediterranean</td>
<td>Portugal, Spain, France, Italy, Slovenia, Croatia, Bosnia, Montenegro, Albania, Malta, Cyprus, Greece, Turkey, Syria, Lebanon, Israel, Egypt, Libya, Tunisia, Malta, Cyprus, Greece, Turkey, Syria, Lebanon, Israel, Egypt, Libya, Tunisia</td>
</tr>
<tr>
<td>Capital cities</td>
<td>Lisbon, Madrid, Paris, Rome, Ljubljana, Zagreb, Sarajevo, Podgorica, Tirana, Valletta, Nicosia Athens, Ankara, Damascus, Beirut, Jerusalem, Cairo, Tripoli, Tunis, Algiers, Rabat</td>
</tr>
<tr>
<td>Islands (excluding island states)</td>
<td>Balearic Islands, Corsica, Sardinia, Sicily, Crete</td>
</tr>
<tr>
<td>Openings of the Mediterranean to other seas</td>
<td>Suez Canal (to the Red Sea), Str. Of Gibraltar (to the Atlantic Ocean), Dardanelles (to Sea of Marmara/Black Sea)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Europe</th>
<th>Places and Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries of the EU</td>
<td>United Kingdom, Germany, Luxembourg, Belgium, Sweden and any other five.</td>
</tr>
<tr>
<td>Capital Cities</td>
<td>London, Berlin, Luxembourg, Brussels, Stockholm and the capital cities of the five other countries chosen above.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The World</th>
<th>Places and Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Continents</td>
<td>Africa, Asia, Europe, North America, Oceania, South America, Antarctica</td>
</tr>
<tr>
<td>The Oceans</td>
<td>The Atlantic, Pacific, Indian, Arctic, Southern Ocean</td>
</tr>
</tbody>
</table>
Form 1 Annual Examination Paper

The Form 1 Annual examination for Geography will consist of one paper of 1 hour 30 minutes duration. There will be two versions of the paper, one in English and one in Maltese. Schools are to indicate the number of papers required in either language.

The examination paper will carry a maximum of 100 marks. Questions will be set on all the three units of the Form 1 curriculum and graded to cater for students working in levels 5, 6, 7 and 8. The range of marks allotted for each level is indicated in the table below.

<table>
<thead>
<tr>
<th>Level</th>
<th>5% to 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 7</td>
<td>55% to 65%</td>
</tr>
<tr>
<td>Level 6</td>
<td>20 to 30%</td>
</tr>
<tr>
<td>Level 5</td>
<td>10 to 15%</td>
</tr>
</tbody>
</table>

Level 8 questions will not be content-based but will test only higher order cognitive skills such as reasoning and inference. Very often Level 8 questions will consist of the final component of a set of structured questions rather than one stand-alone question.

Questions will be structured with gradients of difficulty including objective questions (e.g. completion, true/false, multiple choice questions, cloze questions) resource based questions involving data response and problem solving as well as free response writing. The questions set will assess the students’ understanding and application of the main geographical concepts and knowledge, the acquisition of basic geographical skills and the development of attitudes and values in both strands of learning. Candidates will be required to answer all questions.

The use of non-programmable calculators, geometrical instruments, pencil colours, piece of string and blank sheet of paper for calculating straight and curved distances on Topographic Maps are permitted during the examination.

Teachers are encouraged to follow this format in the setting of their school based half yearly examination, however the above mentioned level weightings are not mandatory.

Schools can also devise their own assessment procedures for Form 1 students working below level 5.
Wieġeb il-mistoqsijiet kollha u ikteb ċar.
Din hija lista ta’ kliem ġeografiku wżat f’din il-karta tal-eżami u t-tifsira tiegħu bl-Ingliż.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pjanta</td>
<td>Plan</td>
</tr>
<tr>
<td>Skala miktuba</td>
<td>Statement of scale</td>
</tr>
<tr>
<td>Linja ta’ skala</td>
<td>Linear scale</td>
</tr>
<tr>
<td>Siġar deciċidwi</td>
<td>Deciduous trees</td>
</tr>
<tr>
<td>Siġar koniferi</td>
<td>Coniferous trees</td>
</tr>
<tr>
<td>Blat kalkarju</td>
<td>Limestone</td>
</tr>
<tr>
<td>Kwadru</td>
<td>Grid square</td>
</tr>
<tr>
<td>Art mistagħdra</td>
<td>Marsh</td>
</tr>
<tr>
<td>Plier</td>
<td>Pillar</td>
</tr>
<tr>
<td>Graff bil-blokki</td>
<td>Block/bar graph</td>
</tr>
<tr>
<td>Pluvjometru</td>
<td>Rain gauge</td>
</tr>
<tr>
<td>Hofra fil-blat</td>
<td>Pot hole</td>
</tr>
</tbody>
</table>

1. Hares sewwa lejn l-istampa (Disinn 1) li turi tpinġija ta’ klassi tal-iskola. Fuq karta separata pinġi l-pjanta tal-klassi billi timmarka l-pożizzjoni tal-imwejjed, is-siġġijiet, it-twieqi, il-bieb, il-mejda tal-ghalliem u l-whiteboard.
2. Hares sewwa lejn disinn 2 li juri mappa tal-Belt Valletta.

Disinn 2

a. Ittkja (✓) it-tajba.
 It-tip ta’ skala li tidher fil-mappa tissejjah

<table>
<thead>
<tr>
<th>skala miktuba</th>
<th>linja ta’ skala</th>
<th>porzjon rappreżentattiv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1)

b. Ghid jekk dan it-taghrif hux **veru** jew **falz**.

<table>
<thead>
<tr>
<th>Il-Pixkerija (Fish Market) tinsab fil-Port ta’ Marsamxett.</th>
<th>Veru</th>
<th>Falz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il-Barrakka ta’ Fuq (Upper Barracca Gardens) thares lejn il-Port ta’ Marsamxett.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triq Brittanja hi parallela ma’ Triq Santa Luċiija.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3)
c. Kejjel ghad-dritt id-distanza mill-

 i. Mużew tal-Arti (Art Museum) għall-Pixkerija (Fish Market). ..
 ii. il-Mużew tal-Gwerra (National War Museum) sal-Barrakka ta’ Fuq (Upper Barracca Gardens) ..

 (2)

d. Aghiti kulur ahmar lil Triq ir-Repubblika. ..

 (1)

e. Aghiti direzzjoni ċara lil turist li mill-Mużew tal-Arti (Art Museum) irid imur il-Forti Sant’Iermu (Fort St. Elmo).

 ..
 ..
 ..
 ..

 (3)

3. Hares sewwa lejn il-mappa (Disinn 3, f’paġna 4) u wara wieġeb dawn il-mistoqsijiet.

a. Ghid f’liema kwadru (agħti erba’ numri) jinsabu:

 i. il-parkeġġ ..
 ii. is-siġar koniferi ..
 iii. is-siġar deċidwi ..

 (3)

b. Fuq il-mappa hemm tliet pontijiet. Ghaliex kien hemm il-htieġa li jinbnew dawn il-pontijiet?

 ..
 ..
 ..

 (2)

c. Persuna imxiet fuq il-bankina t-tul kollu tat-triq prinċipali. Kemm imxiet din il-persuna?

 ...

 (2)

Il-Ġeografija – L-Ewwel Sena tas-Sekondarja – L5 sa 8 Paġna 3 minn 11
Disinn 3
d. Fi kwadru 2743 thawlu hafna aktar sīgar koniferi. Pinġi dawn fuq il-mappa.

(1)

e. Aghti d-direzzjoni tal-boxxla.

i. Il-knisja tinsab lejn …………………….. tal-fanal.

ii. Is-sīgar koniferi jinsabu lejn ………………… tas-sit ta’ kampegg.

(2)

f. Il-grawnd nazzjonali tal-futbol f’din il-gżira jinsab fi kwadru 2543. Pinġi simbolu tal-għażla tieghek li juri l-pożizzjoni tal-grawnd fuq il-mappa. Żid is-simbolu li wżajt hdejn is-simboli l-ohra li jispjegaw il-mappa.

(2)

a. X’insejhulha din il-kaxxa? Immanka (✓) t-tajba.

Barometru
Lqugh ta’ Stevenson
Pluvjometru
Termometru

Disinn 4

b. Ghalfiejn tahseb li din il-kaxxa hi mehtieġa fl-Uffiċċju Meteorologiku?

……………………………………………………………………………………………………

……………………………………………………………………………………………………

……………………………………………………………………………………………………

(2)

c. Fejn titqiegħed ġeneralment din il-kaxxa fl-Uffiċċju Meteorologiku?

……………………………………………………………………………………………………

……………………………………………………………………………………………………

……………………………………………………………………………………………………

(2)
5. żewġ studenti Janet u James, waqt li kienu l-iskola hadu l-kejl tax-xita ghal numru ta’ jienv.

a. xi strument tat-temp użaw biex kejlu kemm niżlet xita kuljum?

……………………………….. (1)

b. Pinġi graff bil-blokk taċ-ċifri li kejlu.

<table>
<thead>
<tr>
<th>It-Tnejn</th>
<th>Il-Tlieta</th>
<th>L-Erbgha</th>
<th>Il-Hamis</th>
<th>Il-Gimgha</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm</td>
<td>5mm</td>
<td>Minghajr xita</td>
<td>15mm</td>
<td>20mm</td>
</tr>
</tbody>
</table>

(10)
6. Hares sewwa lejn il-mappa (Disinn 5) u wara wieġeb dawn il-mistoqsijiet.

Disinn 5

a. Aghti kulur u semmi l-Bahar Mediterran.

b. Semmi l-hames pajjiżi Mediterranji mmarkati bin-numri 1, 2, 3, 4 u 5.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. Semmi u mmarka fuq il-mappa pajjiż li jmiss ma’ pajjiż 1.
d. Fuq il-mappa mmarka u semmi żewġ pajjiżi Ewropej (minbarra dawk li huma ġa mmarkati) li ma jmissux mal-Bahar Mediterran.

7. Aqra sew dan it-taghrif dwar il-blat li nsibu fil-gżejjjer Maltin.

a. Immmarka (✔) s-sentenzi dwar il-blat ta’ Malta li huma veri.

<table>
<thead>
<tr>
<th>序号</th>
<th>句子</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Malta hi magħmula minn blat vulkaniku.</td>
</tr>
<tr>
<td>ii.</td>
<td>Il-geologi jsejhu l-Bahar Mediterran tal-imghoddi bhala l-Bahar Tethys.</td>
</tr>
<tr>
<td>iii.</td>
<td>F’Malta nsibu hames saffi differenti ta’ blat.</td>
</tr>
<tr>
<td>iv.</td>
<td>Il-Globigerina huwa saff ta’ blat impermeabbli.</td>
</tr>
<tr>
<td>v.</td>
<td>Il-Qawwi ta’ Taht jitfarrak fi żrar ghall-konkos.</td>
</tr>
<tr>
<td>vi.</td>
<td>Iż-żonqor huwa l-aktar saff artab ta’ blat li nsibu f’pajjiżna.</td>
</tr>
</tbody>
</table>

b. Ikteb mill-ġdid u rranga s-sentenzi żbaljati fit-tahriġ ta’ fuq.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

(3)

c. Hares sewwa lejn l-istampa, Disinn 6, f’paġna 9, li turi l-fdalijjet ta’ fossila li nstabet qalb il-blat. Spjega kif il-fossili jinsabu fil-blat.

..
..
..
..
..
..

(2)

Disinn 6

Disinn 7

Il-Ġeografija – L-Ewwel Sena tas-Sekondarja – L5 sa 8

Paġna 9 minn 11
b. Uża l-kliem moghti f’tahriġ 8 a. biex tispjega kif il-blat kalkarju jinbidel meta jghaddi minnu l-ilma.

Disinn 8
i. Lokalità 1 hija l-belt ewlenija t’Għawdex. ...

ii. Rahal 2 huwa villaggio maghruf tas-sajd. ...

iii. Gżira 3 tinsab bejn Malta u Għawdex. ...

iv. Hafna Maltin u turisti jżuru lokalità 4 li tinsab qrib tal-Gżira. ...

v. F’port 4 jitrakka l-vapur t’Għawdex. ...

(5)

b. Fuq il-mappa ta’ Malta mmarka u semmi żewġ postijiet ohra tal-ghażla tieghek. ...

10. a. Semmi żewġi differenza bejn post rurali u iehor urban.

...

...

...

...(4)

Semmilhom erba’ attrazzjonijiet ghat-turisti li ghandha Malta minbarra l-bahar u-xemx.

...

...

...

...(4)
Name: ____________________________ Class: _______________

Answer all questions in the space provided.
This is a list of geographical words used in this exam paper and their meaning in Maltese.

<table>
<thead>
<tr>
<th>English</th>
<th>Maltese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>Pjanta</td>
</tr>
<tr>
<td>Statement of scale</td>
<td>Skala miktuba</td>
</tr>
<tr>
<td>Linear scale</td>
<td>Linja ta’ skala</td>
</tr>
<tr>
<td>Deciduous trees</td>
<td>Siġar decidwi</td>
</tr>
<tr>
<td>Coniferous trees</td>
<td>Siġar koniferi</td>
</tr>
<tr>
<td>Limestone</td>
<td>Blat kalkarju</td>
</tr>
<tr>
<td>Grid square</td>
<td>Kwadru</td>
</tr>
<tr>
<td>Marsh</td>
<td>Art mistaghdra</td>
</tr>
<tr>
<td>Pillar</td>
<td>Plier</td>
</tr>
<tr>
<td>Block/bar graph</td>
<td>Graff bil-blokki</td>
</tr>
<tr>
<td>Rain gauge</td>
<td>Pluvjometru</td>
</tr>
<tr>
<td>Pot hole</td>
<td>Hofra fil-blat</td>
</tr>
</tbody>
</table>

1. Look carefully at the image (Figure 1) showing a drawing of a classroom. On a separate sheet of paper draw a plan of the classroom marking clearly the desks, chairs, windows, door, teacher’s desk and whiteboard.

Figure 1

(10)
2. Examine well the following map showing the city of Valletta.

Figure 2

a. Tick (✓) the correct answer.
 The type of scale shown on the map is called

<table>
<thead>
<tr>
<th>representative statement</th>
<th>linear scale</th>
<th>ratio of scale</th>
</tr>
</thead>
</table>

(1)

b. Say if the following statements are true or false.

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Fish Market is found in Marsamxett Harbour.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Upper Barracca Gardens overlook Marsamxett Harbour.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triq Brittanja is parallel to Triq Santa Lucija.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3)
c. Measure the straight line distance from

i. the Art Museum to the Fish Market.

ii. the National War Museum to the Upper Barracca Gardens (2)

d. Colour in red Triq ir-Repubblika. (1)

e. Give clear directions to a tourist who from the Art Museum wants to visit Fort St. Elmo.

...

...

...

...

...

...

...

...

(3)

3. Look at the map in Figure 3 on page 4 and then answer the following questions.

a. Give the four figure grid reference of the following:

i. Parking area

ii. Coniferous trees

iii. one of the bridges (3)

b. On the map there are three bridges. Why do you think there was the need to construct these bridges?

...

...

...

(2)

c. A person walked on the pavement along the whole length of the main road. How much did he travel?

...

(2)
Figure 3
d. More coniferous trees were planted in grid square 2743. Mark these on the map.

(1)

e. Give the compass directions.

i. The church is found to the …………………….. of the lighthouse.

ii. The coniferous trees are found to the …………………….. of the camp site.

(2)

f. The main football ground on this island is found in grid square 2543. Draw a symbol of your choice to represent the football ground on the map. Include your new symbol on the key of the map.

(2)

4. Look carefully at the box in Figure 4.

a. What do we call this box? Tick (✓) the correct answer.

Barometer
Stevenson Screen
Rain Gauge
Thermometer

Figure 4

(1)

b. Why is this box important in a Meteorological station?

..
..
..

(2)

a. Where is this box usually placed in a meteorological station?

..
..
..

(2)
5. At school, two students Janet and James took the readings of the rain for a number of days.

 a. What instrument did they use to find out how much rain fell each day?

 ...

 (1)

 b. Draw a bar graph of these readings.

<table>
<thead>
<tr>
<th>Day</th>
<th>Rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>10mm</td>
</tr>
<tr>
<td>Tuesday</td>
<td>5mm</td>
</tr>
<tr>
<td>Wednesday</td>
<td>No rain</td>
</tr>
<tr>
<td>Thursday</td>
<td>15mm</td>
</tr>
<tr>
<td>Friday</td>
<td>20mm</td>
</tr>
</tbody>
</table>

 (10)
6. Examine well the map below (Figure 5) and then answer the questions.

![Map of Mediterranean countries and the Mediterranean Sea](image)

Figure 5

a. Colour and name the Mediterranean Sea. \(1\)

b. Name the five Mediterranean countries shaded and numbered 1 to 5.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

\(5\)

c. Name and mark on the map a country that has a border with (touches) country 1. \(2\)
d. On the map colour and name (besides those already marked) two European countries that do not touch the Mediterranean Sea.

(4)

7. Read carefully the following statements about the rocks of the Maltese Islands.

a. Tick (√) the statements that are true.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Malta is made up of volcanic rocks.</td>
<td></td>
</tr>
<tr>
<td>ii. Geologists call the ancient Mediterranean Sea, the Sea of Tethys.</td>
<td></td>
</tr>
<tr>
<td>iii. There are five major layers of rocks in the Maltese Islands.</td>
<td></td>
</tr>
<tr>
<td>iv. Globigerina Limestone is an impermeable type of rock.</td>
<td></td>
</tr>
<tr>
<td>v. Lower Coralline Limestone is crushed into spalls to make concrete.</td>
<td></td>
</tr>
<tr>
<td>vi. Lower Coralline Limestone is the softest rock found in Malta.</td>
<td></td>
</tr>
</tbody>
</table>

(6)

b. Rewrite correctly the false statements from the exercise above.

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(3)

c. Look carefully at the photo, Figure 6, on page 9 showing the remains of a fossil found in the layers of Maltese rocks.

Explain why fossils are found in rocks.

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(2)
8. a. Examine Figure 7 and use arrows to add the following labels in their right position on the diagram.

stalagmite permeable rock cave impermeable rock stalactite pillar pot hole
b. Use the labels given for question 8 a. to explain the changes made to limestone when water passes through it.

9. a. Examine the map, Figure 8 and then give the names of the places numbered 1 to 5 with the help of these directions.
i. Place 1 is the principal town of Gozo. ..

ii. Place 2 is a well-known fishing village. ..

iii. Place 3 is an island between Gozo and Malta.

iv. Place 4 is visited by many tourists and locals and it is close to Gzira.

..

v. Place 5 is the place where the Gozo ferry docks while in Gozo.

..

(5)

b. On the map of Malta mark and name two other localities of your choice. (4)

10. a. Give two differences between a rural and an urban settlement.

..

..

..

.. (4)

b. Imagine that you are the Minister for Tourism in Malta speaking to foreign travel agents. Apart from the sea and the sun mention four other tourist attractions in the Maltese Islands.

..

..

..

..

..

.. (4)